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A Generative Model is a powerful way of learning any kind of data distribution using unsupervised
learning. All generative models represent probability distributions over multiple variables in someway
and aim at learning the true data distribution of the training set so as to generate new data points with
some variations.

1 Boltzmann Machines

A Boltzmann machine (Fahlman et al., 1983) is a network of units that are connected to each other.
Let N be the number of units. Each unit takes a binary value (0 or 1). Let Xi be the random variable
representing the value of the i-th unit for i ∈ [1, N ]. We use a column vector X to denote the random
values of the N units. The Boltzmann machine has two types of parameters: bias and weight.

The Boltzmann machine is an energy-based model meaning we define the joint probability distribution
using an energy function:

P (x) =
exp(−E(x))

Z
(1)

where E(x) is the energy function, and Z is the partition function that ensures that ΣxP (x) = 1.

Z =
∑
x̄

exp(−E(x̄)) (2)

The energy function of the Boltzmann machine is given by:

E(x) =

N∑
i=1

bixi −
N−1∑
i=1

N∑
j=i+1

wi,jxixj (3)

= −x>Wx− b>x (4)

where W is the weight matrix of model parameters and b is the vector of bias parameters. In the
general setting of the Boltzmann machine, we are given a set of training examples, each of which are
n-dimensional. Equation 1 describes the joint probability distribution over the observed variables.

The Boltzmann machine becomes more powerful when not all the variables are observed. In this case,
the latent variables can act similarly to hidden units in a multilayer perceptron and model higher-
order interactions among the visible units. Instead, the Boltzmann machine becomes a universal
approximator of probability mass functions over discrete variables. Formally, we decompose the
units x into two subsets: the visible units v and the latent (or hidden) units h. The energy function
becomes:

E(v, h) = −v>Rv − v>Wh− h>Sh− b>v − c>h. (5)

Learning algorithms for Boltzmann machines are usually based on maximum likelihood. All Boltz-
mann machines have an intractable partition function, so the maximum likelihood gradient must be
approximated using the techniques in previous presentation.
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Figure 1: The restricted Boltzmann machine is an undirected graphical model based on a bipartite
graph, with visible units in one part of the graph and hidden units in the other part. There are no
connections among the visible units, nor any connections among the hidden units. Typically every
visible unit is connected to every hidden unit, but it is possible to construct sparsely connected RBMs
such as convolutional RBMs.

One interesting property of Boltzmann machines when trained with learning rules based on maximum
likelihood is that the update for a particular weight connecting two units depends only on the statistics
of those two units, collected under different distributions.

2 Restricted Boltzmann Machines

RBMs (Smolensky, 1986) are undirected probabilistic graphical models containing a layer of observ-
able variables and a single layer of latent variables (figure 1). Like the general Boltzmann machine,
the restricted Boltzmann machine is an energy-based model with the joint probability distribution
specified by its energy function:

P (v = v, h = h) =
1

Z
exp(−E(v, h)) (6)

The energy function for an RBM is given by

E(v, h) = −b>v − c>h− v>Wh, (7)

and Z is the normalizing constant known as the partition function:

Z =
∑
v̄

∑
h̄

exp(−E(v̄, h̄)) (8)

It is apparent that the computing Z by exhaustively summing over all states could be computationally
intractable. Long and Servedio (2010) formally proved that the partition function Z and consequently
P(v) is intractable.

2.1 Conditional Distributions

However, due to the bipartite structure of the graph, P (v | h) and P (h | v) are factorial and relatively
simple to compute and sample from.

Since we are conditioning on the visible units v, we can treat these as constant with respect to the
distribution P (h | v).

P (h | v) =
P (h, v)

P (v)
(9)

=
1

P (v)

1

Z
exp{b>v + c>h+ v>Wh} (10)

=
1

Z ′
exp{c>h+ v>Wh} (11)

=
1

Z ′
exp{

nh∑
j=1

cjhj +

nh∑
j=1

v>W:,jhj} (12)
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Figure 2: In a deep belief network there are no intralayer connections. Usually, every unit in each layer
is connected to every unit in each neighboring layer, though it is possible to construct more sparsely
connected DBNs. The connections between the top two layers are undirected. The connections
between all other layers are directed, with the arrows pointed toward the layer that is closest to the
data

=
1

Z ′

nh∏
j=1

exp{cjhj + v>W:,jhj} (13)

It is now a simple matter of normalizing the distributions over the individual binary hj :

P (hj = 1 | v) =
P̃ (hj = 1 | v)

P̃ (hj = 0 | v) + P̃ (hj = 1 | v)
(14)

=
exp{cj + v>W:,j}

exp{0}+ exp{cj + v>W:,j}
(15)

= σ
(
cj + v>W:,j

)
(16)

We can now express the full conditional over the hidden layer as the factorial distribution:

P (h | v) =

nh∏
j=1

σ
(
(2h− 1) · (c+W>v)

)
j

(17)

and accordingly:

P (v | h) =

nv∏
i=1

σ ((2v − 1) · (b+Wh))i (18)

3 Deep Belief Networks

The introduction of deep belief networks in 2006 (Hinton and Salakhutdinov, 2006) began the
current deep learning renaissance. Prior to the introduction of deep belief networks, deep models
were considered too difficult to optimize. DBNs are generative models with several layers of latent
variables (figure 2). A DBN with l hidden layers contains l weight matrices: W (1), ...,W (l). It
also contains l + 1 bias vectors b(0), ..., b(l), with b(0) providing the biases for the visible layer. The
probability distribution represented by the DBN is given by:

P (h(l), h(l−1)) ∝ exp
(
b(l)h(l) + b(l−1)>h(l−1) + h(l−1)W (l)h(l)

)
(19)

P (h
(k)
i = 1 | h(k+1)) = σ

(
b
(k)
i +W

(k+1)>
:,i h(k+1)

)
∀i,∀k ∈ 1, ..., l − 1 (20)

P (vi = 1 | h(1)) = σ
(
b
(0)
i +W

(1)>
:,i h(1)

)
∀i (21)

To generate a sample from a DBN, we first run several steps of Gibbs sampling on the top two hidden
layers. We can then use a single pass of ancestral sampling through the rest of the model to draw a
sample from the visible units.
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Figure 3: A deep Boltzmann machine is an undirected graphical model with several layers of latent
variables. Like RBMs and DBNs, DBMs lack intralayer connections.DBMs are less closely tied to
RBMs than DBNs are. Deep Boltzman nmachines have been applied to a variety of tasks, including
document modeling

To train a deep belief network, one begins by training an RBM to maximize Ev∼Pdata
logp(v) using

contrastive divergence or stochastic maximum likelihood. The parameters of the RBM then define the
parameters of the first layer of the DBN. Next, a second RBM is trained to approximately maximize

Ev∼pdata
Eh(1)∼p(1)(h(1)|v)logp(2)(h(1)) (22)

where p(1) is the probability distribution represented by the first RBM, and p(2) is the probability
distribution represented by the second RBM.

The trained DBN may be used directly as a generative model, but most of the interest in DBNs arose
from their ability to improve classification models. We can take the weights from the DBN and use
them to define an MLP:

h(1) = σ
(
b(1) + v>W (1)

)
(23)

h(l) = σ
(
b(l) + h(l−1)>W (l)

)
∀l ∈ 2, ...,m (24)

The MLP is initialized with the learned weights and biases from the generative training of the DBN
and propagates information upward from the visible units to the deepest hidden units, but it does not
propagate any information downward or sideways.

4 Deep Boltzmann Machines

A DBM (Salakhutdinov and Hinton, 2009), an entirely undirected model (figure 3), is an energy-based
model and the joint probability distribution over the model variables is parametrized by the energy
function E like other deep generative models.

P
(
v, h(1), h(2), h(3)

)
=

1

Z(θ)
exp

(
−E(v, h(1), h(2), h(3); θ)

)
(25)

To simplify our presentation, we omit the bias parameters below. The DBM energy function is then
defined as follows:

E(v, h(1), h(2), h(3); θ) = −v>W (1)h(1) − h(1)>W (2)h(2) − h(2)> −W (3)h(3) (26)

DBM energy function includes connections between the hidden units (latent variables) in the form of
the weight matrices.

The DBM layers can be organized into a bipartite graph, with odd layers on one side and even layers
on the other (figure 4). Thus we can apply the same equations we have previously used for the
conditional distributions of an RBM to determine the conditional distributions in a DBM. The units
within a layer are conditionally independent from each other given the values of the neighboring
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Figure 4: Converting the DBM to its bipartite form

layers, so the distributions over binary variables can be fully described by the Bernoulli parameters,
giving the probability of each unit being active.

P (vi = 1 | h(1)) = σ(W
(1)
i,: h

(1)) (27)

P (h
(1)
i | v, h(2)) = σ

(
v>W

(1)
:,i +W

(2)
i,: h

(2)
)

(28)

And the same probability distribution can be modeled for upper layers.

Due to the bipartite structure, Gibbs sampling can be performed the same as in RBMs by updating
one block in the same time (only two iterations).

5 Boltzmann Machines for Real-Valued Data

While Boltzmann machines were originally developed to be used with binary data, many applications
such as image and audio modeling seem to require the ability to represent probability distributions
over real values.

5.1 Gaussian-Bernoulli RBMs

The most common RBM designed for exponential family conditional distributions is the RBM with
binary hidden units and real-valued visible units, with the conditional distribution over the visible
units being a Gaussian distribution whose mean is a function of the hidden units.

For example by using a precision matrix for the Gaussian distribution we will have

p(v | h) = N (v;Wh,B−1) (29)

Based on the Gaussian function:

logN (v;Wh,B−1) = −1

2
(v −Wh)>B(v −Wh) + f(B) (30)

where f(B) is only a function of parameters and can be discarded from the energy function. p(v | h)
can be represented by all the terms from equation 30 involving v, but we have more freedom for
defining p(h|v).

5.2 Undirected Models of Conditional Covariance

In some types of real valued data, such as images, much of the information is embedded in the
covariance between units (pixels). Therefore, the Gaussian RBM cannot capture the conditional
covariance.

In Mean and Covariance RBM hidden unit is divided into mean units (Gaussian RBM - h(m)) and
covariance units (cRBM - h(c)). The energy function
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Emc(x, h
(m) = h(c)) = Em(x, h(m)) + Ec(x, h

(c)) (31)
where

Em(x, h(m)) =
1

2
x>x−

∑
j

x>W:,jh
(m)
j −

∑
j

b
(m)
j h

(m)
j (32)

and
Ec(x, h

(c)) =
1

2

∑
j

h
(c)
j

(
x>r(j)

)2

−
∑
j

b
(c)
j h

(c)
j (33)

6 Convolutional Boltzmann Machines

Replacing matrix multiplication by discrete convolution with a small kernel is the standard way
of solving memory and computation problems for high-dimensional inputs. Deep convolutional
networks usually require a pooling operation so that the spatial size of each successive layer decreases
(Lee et al., 2009).

In order to generalize this to the energy based models, we could introduce a binary pooling unit p over
n binary detector units d and enforce p = maxidi by setting the energy function to be∞ whenever
that constraint is violated which requires evaluating 2n different energy configurations.

Instead, probabilistic max pooling constrains the detector units so at most one may be active at a
time. The resulting model only has n + 1 states.

7 Boltzmann Machines for Structured or Sequential Outputs

Let’s assume that the model is trained to map from inputs x to outputs y, and different entries of y
are related to each other. Boltzmann machines can supply the probability distribution p(y | x) that
represents the relationships. The same is true for sequence modeling (p(x(t) | x(1), ..., x(t−1))).

An important sequence modeling task for the video game and film industry is modeling sequences of
joint angles of skeletons used to render 3-D characters. Conditional RBM over preceding m values
of x is introduced to model p(x(t) | x(t−1), ..., x(t−m)) for this problem. The weights in the RBM
over x never change, but by conditioning on different past values, we can change the probability of
different hidden units in the RBM being active.

Another sequence modeling task is to model the distribution over sequences of musical notes used to
compose songs. RNN-RBM is designed to emit the RBM parameters (both bias and weights) for
each time step.
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